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ABSTRACT

A perturbation theory for propagation on an
open microstrip transmission line is developed by
expanding the field and the propagation constant
in a power series in k., the free space wave
number. This theory on?y requires the use of two
relatively simple static Green's functionms.

Introduction

A dynamic full wave analysis of the standard
unshielded microstrip transmission line is very
complex because of the coupling of TE and TM
waves and the complicated structure of the re-
quired Green's dyadic function. On the other
hand at the lower frequencies the zero'th order
quasi-static solution is known to be quite accu~-
rate. It is therefore apparant that a power
series solution in powers of the radian fre-
quency w should provide a much needed extension
of the available quasi-static solution along
with a description of the dispersive properties
of the line and the field ‘distribution in the
cross section of the line. In this paper such a
perturbation theory is developed. It establishes
the usual quasi-static results as the zero fre-
quency limit of the exact solution as well as pro-
viding a systematic scheme to find the higher
order corrections.

The Perturbation Expansion

The theory is developed by using the vector
potential function A and scalar potential ¢ in
the Lorentz gauge. The vector potential function
is assumed to have the form (x,y)e_ where B
is the unknown propagation constant. The function
A (x,y) is expanded as a perturbation series

x (x,y) = KO + nKl + n2A2 + ... (1)

The scalar potential is represented by the series
_ 2
¢ (xy) =¢;+no; + n b+ .. (2)

Since B(w) must be an odd function of w it is
expanded as

_ 3
B = ng +n By + o .. (3)

In a similar way the fields E>and i and the
current J and charge p on the strip (see Fig. 1)
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are expanded as perturbation series. The pertur-

bation parameter n is associated with w so that

ké = (w2/c?) is replaced by nzké.
y
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The equations that determine the fields are
2 2 2 2
[V + (@) ko - )] K==y F (4a)
t 0 0
2 2 2 2
Vi + (07 (y) kg = 890] ¢ =-0/z (4b)
. > 2 2 >
N w uyegk(y) E = n K(y)kO A+
. L > > 2~
(AN x I8V, A, -38a v, K—8%5 A (40)
H=v_ x%-iga x4
Hg H=V,_x JBaZ x 4d)
vt-Z - JBAZ= - jnwk(y) EOUO o] (4e)

along with appropriate boundary conditions on the
ground plane, on the strip, and at the air-dielec-
tric interface.

An alternative formulation could be based on
the use of the vector and scalar potentials in the
Coulomb gauge. This has the disadvantage of re-
quiring a three component vector potential function
that satisfies the condition V<A = 0. By using the
Lorentz gauge there are fewer unknown functions to
relate together at each level of the approximation.
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The lowest order approximation requires a

solution for AOz’ @0 where
VoA =-yu g (5a)
t 0z 0 "0z
P
2. _ 0
Vt¢0 ?i; (5b)

The boundary conditions impose on these potentials

the conditions

AOz’ @0 are zero on the ground plane (6a)
AOz’ @0 are constant on the strip (6b)
BAOZ 29
AOz’ 5y @O, and K(y)-5§— are continuous
at the air-dielectric interface (6c)
wAOz = Bl @O on the strip (6d)

The above equations are solved using two
static scalar Green's functions that satisfy

Vz G, =
i

. - 8(x-x') §(y-y"), i -1, 2 (7

3G
where G1 and —— are continuous at the air-dielec~
tric inferface” and Gy = 0 on the ground plane

3G
while G, and K<y)?§% are continuous at the inter-

= 0 on the ground plane also. The
solution for G, is obtained as a solution to a
simple image problem. The solution for G2 is
developed as an infinite image series.

face and G

From the solution of the above system it is

= 1
found that 8; w(L,Cy) /> where L, and C, are the

expected static inductance and capacitance per
unit length.

At the next level of approximation A2z’ A1X

and @2 must be found where
2 2 2
Ve By, T T g Ty, T 1B - kKGT A, (82)
o =224 182 ey K2 0 (8b)
t 72 e 1 W) 5 By

0

along with appropriate boundary conditions that
couple Azz, A1x and @2 and involving the next

higher order term B, in the expansion of B. The
equations can be soived using the same Green's

functions Gl and GZ'

Numerical results for B, and 63 for typical
microstrip lines will be given in the paper as
well as a more complete development of the theory
and the relevant boundary conditions. One major
advantage of this theory is that only two relat-
ively simple scalar Green's functions are required.
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Zero'th Order Solution
For the zero'th order solution the current on
the strip is approximated by the following expres-
sion:
2 4 6
I0 + Il x + sz + I3x
1 -~ xZ

J =

Oz &)

and a similar form is used for p.. In the above
equation the length unit has been chosen so that
the strip is 2 units wide. It is found that I

and I, are very small and that I, accounts for the
preseiice of the ground plane.

On the strip we can write

AOz =1 LO
% =EQ‘= v
0

where I is the total current on the strip, Q is
the total charge on the strip, and L, and C, are
the static inductance and capacitance per unit
length. The vanishing of E on the strip imposes
the condition (6d) on the po%entials. This condi-
tion gives

(10a)

(10b)

wL, I =8, &, =B, V

0 1% =% (1)

The continuity equation relating current and charge
requires that

B I =wQ (12)

From (10b) and (12) we obtain

which, when combined with (11) gives

1/2

C. L, and V= (LO/CO) I

1 0 70

These are the expected quasi-static results. Note,
however, that even in the zero'th order approxima-
tion the theory does not require that the axial
electric field be zero.

When the higher order approximations are
developed it is found that A, & , A. are not
required. Only the even numbefed %ermézin A, 0
and the odd numbered terms in A_ are coupled
together. *
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