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ABSTRACT

A perturbation theory for propagation on an

open microstrip transmission line is developed by

expanding the field and the propagation constant
in a power series in k , the free space wave

numb e r. 9This theory on y requires the use of two

relatively simple static Green’s functions.

Introduction

A dynamic full wave analysis of the standard

unshielded microstrip transmission line is very

complex because of the coupling of TE and TM

waves and the complicated structure of the re–

quired Green’s dyadic function. On the other

hand at the lower frequencies the zero’th order

quasi–static solution is known to be quite accu-

rate. It is therefore apparant that a power

series solution in powers of the radian fre-

quency w should provide a much needed extension

of the available quasi-static solution along

with a description of the dispersive properties

of the line and the field ”distribution in the

cross section of the line. In this paper such a

perturbation theory is developed. It establishes

the usual quasi-,static results as the zero fre–

quency limit of the exact solution as well as pro–

vialing a systematic scheme to find the higher

order corrections.

The Perturbation Expansion

The theory is ~eveloped by using the vector

potential function A and scalar potential @ in

the Lorentz gauge. : * functionThe vecto~ ~~~~~=? z where ~

is assumed to have the form

>s the unknown propagation constant. The function

A (x,y) is expanded as a perturbation series

~(x,y)=~o+&+r12A2 +... (1)

The scalar potential is represented by the series

@ (X,y) = C’. +no1+n%2+ . . . (2)

Since 6(w) must be an odd function of u it is

expanded as

B=?N31+A33+... (3)

In a sim~lar way the fields 8 and % and the

current J and charge p on the strip (see Fig. 1)

are expanded as perturbation series. The pertur-
bation parameter ~ is associated with u so that

k; = (u2/c2) is replaced by nzk~.
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equations that determine )e fields are

[V: + (~2K(y) k: - (32)

[V:+ (~2K(y) k: - 62)
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(4s)

(4b)

(4C)

(4d)

(4e)

along with aDuroDriate boundary conditions on the
grou;d plane~’on’ the strip, and at the ,air–dielec–

tric interface.

An alternative formulation could be based on

the use of the vector and scalar potentials in the

Coulomb gauge. This has the disadvanta,ge of re–

quiring a three component vector+potential function
that satisfies the condition V.A = o. .By using the

Lorentz gauge there are fewer unknown functions to

relate together at each level of the approximation.
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The lowest order approximation

solution for A
Oz’

00 where

V: Aoz = - PO Joz

P.
V:oo = - —

‘o

requires a

(5a)

(5b)

The boundary conditions impose on these potentials

the conditions

‘Oz’ ‘o
are zero on the ground plane (6a)

’02’ ‘o
are constant on the

aAoz a~o

A—
02’ ay ‘ 00’

and K(y) ~

at the air-dielectric interface

WA
Oz = % ‘o

on the strip

strip (6b)

are continuous

(6c)

(6d)

The above equations are solved using two

static scalar Green’s functions that satisfy

v: Gi = – 6(x–x’) &(y–y’), i – 1, 2 (7)

aG1

where G1 and — are continuous at the air–dielec-
ay

tric interface and GI = O on the ground plane
aG

while G2 and K(y)& are continuous at the inter-

face and G2 = O on the ground plane also. The

solution for G1 is obtained as a solution to a
simple image problem. The solution for G2 is

developed as an infinite image series.

From the solution of the above system it is

found that 61 = ~(LoCo)l/~ where Lo and Co are the

expected static inductance and capacitance per

unit length.

At the next level of approximation A2Z, Alx

and @
2

must be found where

v: A2Z = -
~o ‘2Z

+ [6: - K(y)k;] Aoz (8a)

‘2
v:@2=-— + M: ‘K(y) k;] 00

‘o

(8b)

along with appropriate boundary conditions that

couple A2Z, Alx and @2 and involving the next

higher order term 6

1

in the expansion of f3. The

equations can be so ved using the same Green’s
functions G1 and G2.

Numerical results for f31 and f33 for typical

microstrip lines will be given in the paper as

well as a more complete development of the theory

and the relevant boundary conditions. One major

advantage of this theory is that only two relat–
ively simple scalar Green’s functions are required.

Zerorth Order Solution

For the zero’th order solution the current on

the strip is approximated by the following expres-

sion:

10 + 11 X2 + 12X4 + 13X6

‘Oz =
(9)

m

and a similar form is used for p . In the above
equation the length unit has bee~ chosen so that

the strip is 2 units wide. It is found that 12
and I are very small and that I ~ accounts for the
presedce of the ground plane.

On the strip we can write

’02
=ILO

-Q= “
‘o = co

(lOa)

(lOb)

where I is the total current on the strip, Q is

the total charge on the strip, and Lo and Co are

the static inductance and capacitance per unit

length. The vanishing of EO on the strip imposes
the condition (6d) on the potentials. This condi–
tion gives

The continuity equation relating current and charge

requires that

From

which

B11=6)Q (12)

10b) and (12) we obtain

L311=wCOV

when combined with (11) gives

1/2
f3~ = W2 Co LO and V= (Lo/Co) I

These are the expected quasi-static results. Note,
however, that even in the zero’th order approxima–

tion the theory does not require that the axial
electric field be zero.

When the higher order approximations are

developed it is found that A , 0 , A

required. Only the even numb~~ed ~erm~zi~r~z~;

and the odd numbered terms in Ax are coupled
together.
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